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Stokes’ infinitesimal-wave expansion for steady progressive free-surface waves 
has been extended to high order using a computer to perform the coefficient 
arithmetic. Stokes’ expansion has been found to be incapable of yielding the 
highest wave for any value of the water depth since convergence is limited by a 
square-root branch-point some distance short of the maximum. By reformulating 
the problem using a different independent parameter, the highest waves are 
obtained correctly. Series summation and analytic continuation are facilitated by 
the use of Pad6 approximants. The method is valid in principle for any finite value 
of the wavelength and solutions of high accuracy can be obtained for most values 
of the wave height and water depth. An alternative expansion procedure pro- 
posed by Havelock for the computation of waves short of the highest has been 
reconsidered and found to be defective. 

1. Introduction 
The problem of steady progressive free-surface waves is one of the oldest in the 

literature of mathematical fluid mechanics. Gerstner (1804) recognized that the 
free surface is characterized by constant pressure and offered a simple solution 
having this property. In the Gerstner wave each fluid particle trajectory is a 
trochoid. Both the surface and continuity conditions are satisfied exactly, but 
the flow field is not irrotational. Stokes (1849), after a careful consideration of 
how wave motion may be excited by surface forces, concluded that the flow of 
greatest physical interest should be free of rotation. Thus the problem consists 
of finding a two-dimensional velocity field with constant surface pressure whose 
velocity components may be derived from a potential function which satisfies 
Laplace’s equation. Stokes proposed a solution by means of a perturbation 
expansion in a parameter assumed to vary monotonically with the wave height1 
length ratio. The method yields solutions in which the space co-ordinates are 
taken as the independent variables. 

While preparing his collected papers in 1880, Stokes had occasion to reconsider 
the method and discovered that the complexity of the calculations could be 
greatly reduced by using the velocity potential and stream function, rather than 
the space co-ordinates, as the independent quantities. It is this second method of 
Stokes which will be considered in the present work. 

t Present address: N.A.S.A. Ames Research Center, Moffett Field, California. 
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Stokes (1 880) demonstrated that his perturbation expansion can be computed 
for finite as well as infinite water depths. He conceded, however, that the series 
will converge more slowly for smaller values of depth/wavelength. An approxi- 
mate solution for the extreme case, depthllength approaching zero, called the 
solitary wave, was found by Boussinesq in 1871. Another approximate solution, 
for depth/length small, but finite, was given by Korteweg & de Vries (1895). This 
approximation is known as the cnoidal wave because of its description in terms 
of the Jacobian elliptic function en (x, k). Both the solitary and cnoidal waves 
were found by Keller (1948) to be derivable from a higher-order extension of the 
shallow-water theory. From the point of view of flow field computation the high- 
order shallow-water theory, because of its complexity, is significantly less 
attractive than the infinitesimal-wave expansion of Stokes. 

A number of interesting questions concerning the mathematical character of 
the steady progressive-wave solution remain to be explored. By a simple argu- 
ment, Stokes showed that the highest free-surface wave, assumed to be sharp- 
crested, would have an included angle of 120' at the crest. May one conclude, 
therefore, that this highest wave represents ths limiting value for the small 
parameter in the infinitesimal-wave expansion? Second, one may ask, to what 
extent is the Stokes expansion capable of yielding accurate results for high waves 
in shallow water? Do deep-water and shallow-water waves differ fundamentally 
in character or merely in scale? These are the questions which have motivated 
the present study. 

Several authors have devised proofs of the existence of periodic gravity waves. 
Nekrasov (1921) was able to demonstrate that a non-trivial solution to the 
progressive-wave problem, formulated as an integral equation, could be found 
for sufficiently small values of the wave amplitude. Levi-Civita, Struik and others 
did similar work, extending the proof to cover the finite depth case. Krasovskii 
(1960) has devised by far the most significant proof using techniques from the 
theory of positive operators. He shows that Nekrasov's equation has solutions, 
for any value of the depth, for which the maximum surface angle takes on values 
in the closed interval [O,+n]. He shows further that the Froude number, or 
dimensionless wave speed, is bounded and assumes its maximum and minimum 
when the surface angle lies in this interval. However, the proof does not suggest 
a method of solution and does not rule out the possibility that solutions with 
surface angles greater than 30" can be found, for example. 

Before proceeding, however, it may be well to consider the usefulness of 
this steady, inviscid, potential flow solution in problems of physical interest. 
Recent papers by Whitham (1967) and Benjamin & Feir (1967) have con- 
sidered the stability of an infinite train of progressive Stokes waves with 
respect to small frequency modulations. They conclude that for sufficiently 
large values of the water depth slight disturbances to the wave train will grow 
exponentially. Since these disturbances are always present, the wave train will 
inevitably disintegrate after a sufficient period of time. This should not be inter- 
preted as implying that Stokes waves in deep water do not exist in nature, but 
merely that they cannot be expected to preserve a constant form over long time 
scales. 
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The process of wave breaking is one of considerable physical importance. In the 
Stokes theory the wave form is assumed to remain symmetrical as the amplitude 
increases until the wave of maximum height, for a given wavelength and water 
depth, is reached. If additional energy is transferred to this sharp-crested wave, 
the profile will disintegrate, breaking first a t  the crest. In  the open ocean a number 
of other factors contribute to the breaking phenomenon. The complex process of 
wind-wave interaction can lead to  breaking by energy transfer through the 
turbulent boundary layer. Moreover, ocean waves propagate on the air-water 
interface; thus they are subject to shear instabilities of the Kelvin-Helmholtz 
type. I n  addition the ocean surface is formed by the superposition of many wave 
trains of different direction and frequency. The interactions between short gravity 
waves and large-scale ‘carrier’ waves can lead to yet other possible breaking 
mechanisms. 

The breaking of waves on beaches is caused primarily by the decreasing depth, 
which forces the waves to steepen and ultimately break. If the beach slope is 
small, wave reflexion is minimal and spilling breakers are observed. Since the 
bottom, in this case, is almost horizontal, we feel that the highest-wave results 
of the present study should be useful in predicting where the breakers will first 
be formed. 

The present work is envisaged as having a dual objective. While dealing 
specifically with the problem of Stokes waves, it also serves to illustrate the type 
of information which may be extracted from a high-order perturbation computa- 
tion. Often the domain of validity of a power series can be extended far beyond its 
circle of convergence through the use of Pad6 approximants (rational fractions). 
Though Pad6 approximants have long been recognized as providing a type of 
‘ automatic ’ analytic continuation, it is only recently, with the advent of modern 
computers to handle the algebraic drudgery, that their worth as a research tool 
has been revealed. Another technique of great value in the interpretation of 
perturbation computations is the graphical procedure of Domb & Sykes (1957). 
Their method is an extension of the d’dlembert ratio test which, for a class of 
simple functions, can accurately predict the nature and location of the singularity 
which limits convergence. 

2. The perturbation solution 
Consider symmetrical two-dimensional periodic waves moving from right to 

left with constant speed c relative to an inertial frame on the surface of fluid of 
finite depth. The bottom is assumed to be horizontal. Consider a second frame of 
reference moving with a wave crest. With respect to this frame the motion is 
steady; the general direction of flow is now from left to right. The fluid is assumed 
to be inviscid and incompressible and the motion to be irrotational; hence the 
solution may be represented as an analytic function of the complex variable x .  
One cycle in the physical or z plane is shown in figure 1 (a). In  the figure L is the 
wavelength, D the mean depth measured from the still-water level and A the 
peak-to-trough wave height. g ,  the acceleration due to gravity, acts downward. 
The y axis is known to be a line of symmetry. The wave speed c may be defined as 
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FIGURE 1. ( a )  z plane, ( b )  5 plane. 

the average fluid velocity at any horizontal level completely within the fluid. 

(2.1) 
That is, 1 

c = z / I + L  4 2 ,  Y 1 dx 

in the wave-fixed reference frame. 
Introduce dimensionless variables by selecting c,, = (gL/27~): as the reference 

velocity and L/2n as the reference length. Let the stream function 4 assume the 
values 0 and - Q on the free surface and channel bottom respectively. Locate the 
x axis a distance d = Q/c above the bottom. This undisturbed fluid depth d will 
in general differ from the mean depth D by the small amount @. The quantity YL 
is the fluid volume convected by each wave cycle by virtue of the definition of the 
wave speed c. The Bernoulli condition is imposed on the unknown free surface; 

q4+2y = K on 4 = 0, (2.2) 

where q = u - i v  and the bar signifies complex conjugation. 
Rather than solve the problem in the physical plane, where the shape of the 
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free surface is unknown, we map the interior of each fluid cycle in the z plane into 
an annulus of unit outer radius in the 6 plane according to the transformation 

(2.3) z ( 6 )  = i[logY+a,({-rt/C)+ ... +(aj/$ ( P - r S / C i ) +  ...I, 
where 6 = reix. The channel bottom I,I9 = - cd and free surface I,I9 = 0 are mapped 
onto the circles r = e-d and r = 1 respectively. The f;-plane solution is a simple 
potential vortex 

w = $+iI,I9 = iclog& (2-4) 

Equations (2.3) and (2.4) effect the exchange of roles of the independent and 
dependent variables analogous to the procedure of Stokes (1880). The resulting 
problem in the 6 plane is quadratically rather than exponentially nonlinear and 
the perturbation calculations are considerably simplified. Figure 1 ( b )  shows the 

plane. Corresponding points in figures 1 (a)  and (b )  are denoted by the same 
symbols. Note that the branch cut in figure 1 ( b )  separates different wave cycles 
corresponding to multiple values of log 6 in (2.3). 

The free-surface wave problem as formulated will have a two-parameter family 
of solutions depending, in general, on the transformed water depth ro and the 
wave height A .  The limiting cases ro = 0 and ro = 1 represent deep-water and 
solitary waves respectively. 

The unknown transformation coefficients af in (2.3) are determined by condi- 
tion (2.2) rewritten in the new variables. The velocity may be calculated as 

dw dw/dC 
dz dz/d< 

1 + al((+ 1-$/6) + . . . + aj(Ci + rt / { i )  + . . . ' 

q = - = -  

c 
(2-5) - - 

Expressions for the free-surface velocity and elevation are obtained by setting 
[ = eixin (2.5) and the imaginary part of (2.3). Equation (2.2) can then be written 
as a cosine series in x. Setting the separate harmonic coefficients equal to zero, 

c2 + 2 C @z = Kf,, (2.6a) 

C O0 --j- a24 {fll-jl+fi+l> = Kff (j = 1,2,  ...). (2.6b) 

The fi have been introduced for convenience and need not be reported in the final 
solution. They are defined as 

we obtain m 

z=1 1 

i= 1 

M 

rn 

(2.7a) 

(2.7b) 

where cri = 1 + r f  and Si = 1 -rF for i 2 1.  Equations (2.6) and (2.7) completely 
determine the a,, c2 and K for a given wave height and water depth. They will be 
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solved by a high-order perturbation calculation where the digital computer is 
used to find and store the coefficients. 

Let e be a global parameter associated with the wave height that is equal to 
zero when A equals zero. A more explicit definition of e will be deferred for the 
moment. Assume power-series expansions in e of the form 

m 

f. 3 = c p. 3k &+2k (j = 0,1,  ...), 
k = O  

m m 

1=0 l = O  
c2 = 2 yle2z, K = 2 Ale%. 

(2 .8b )  

( 2 . 8 ~ '  d )  

Expansions (2.8) are substituted in (2.6) and (2.7) and, by equating coefficients of 
like powers of e,  recurrence relations for the a's, P's, y's and A's are obtained. 
These are 

where summations are taken to be identically zero in those cases where the lower 
limit exceeds the upper. Equations ( 2 . 9 ~ )  and (2.9d), defining the relationship 
between the a's and the p's, are derived from (2.7).  Equations (2.9a) and (2.96) 
come from (2.6). The system of equations (2.9) is not closed until the parameter e 
is identified. 

3. Extension of Stokes' solution 
If we choose e = a,, the first transformation coefficient in (2.3), we in effect 

reproduce the expansion procedure of Stokes (1880). The system of equations 
(2.9) is closed by taking 

al0 = 1, Elk = 0 (k = 1,2,  ...). 

Stokes himself computed the solution to O(a:) for general depth and to O(ul) in 
the special case of infinite depth. Wilton (1914) carried the infinite depth computa- 
tion up to O(aio) but has errors starting with his eighth-order results. De (1955) 
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has published a fifth-order solution for general depth. These last two suggest the 
order of solution which is the practical limit of hand calculation. 

Equations (2.9) were programmed in FORTRAN I V  and solved to high order 
on the Stanford 360167 computer. The execution time for a double-precision 
(16 decimal place) solution to order aZo was just under one minute. The value of 
the water depth, corresponding to the input parameter ro, does not affect the run 
time. 

The most significant derived parameter in this formulation is the peak-to- 
trough wave height. The wave profile in the z plane may be obtained para- 
metrically in terms of the angle x by substituting < = eixinto (2.3) and separately 
equating real and imaginary parts. We obtain 

y = a16, cosx + *a2J2 cos 231 + . . . + (u,6,/n) cos nX + . . . , 
--x = X + a , a l s i n ~ + ~ a 2 a 2 s i n 2 ~ +  ... +(a,a,/n)sinnx+ ... . 

(3.la) 

( 3 . l b )  

Since peaks correspond to x = 0 and troughs to  x = 7r, the semi-wave height 

(3.2) 

is given by 
m 

h = 4[y(O)-y(n)] = a,61++a,63+ ... = C (a2i-162i-1)/(2j- 1).  
j= l  

Or, by expanding the ai in powers of B and regrouping, we obtain 

Note that h is equal to  TAIL. The results up to O(a!) for the deep-water wave, 
ro = 0, are presented below. Rational numbers were obtained by recognizing 
repeating patterns in the computer-produced decimals. 

"1 = a17 

u2 = Z a ~ + a f + z $ a ~ + f ~ a ~ +  ..., 
a3 = $a:+J$a:+wa:+ ..., 
a - - 3 2  4 

a - 6 2 5  5 1 6 6 0 3  7 

a6 = 3 4 2  6 T-al+-mal+. . . ,  5 4 4 7 3  8 

a - 1 3 1 0 7 2  8 

- s - a l + - ~ a l + 1 ~ Z s 7 0 2 7 u ~ + . . . ,  313 6 

- -Kal+-mral+..., 

, - 1772t4 a: + . . . , a8 = -gn- al + . . . , 
K = 1 + 2a: + l+at +%'a! + z $ e  a! + . . . , 
c2 = I + a : + ~ a ~ + ~ $ a ~ + f i ~ a ~ +  ..., 
h = a l + ~ u 3 , + J ~ a ~ + ~ ~ ~ a : +  ... . 

(3.4) 

Wilton noticed that the first coefficient in the expansion for each a, is given by 
nn/n !. Note that the last coefficient shown, for both K and c2, does not agree with 
his results. 

The displacement of the still-water level and hence the mass transport may be 
computed once the ai are known. By definition 
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Using the parametric representations of x and y given in (3.1) and performing 
the integration yields 

S2ja,2. 
D = (4) r, - 

j=1 j 
(3 .6 )  

This last equation can then be rewritten as a series in 8. 

Inspection of each series in (3.4) reveals a trend which continues into the higher- 
order solution. All the coefficients are positive, implying that the singularity 
which limits convergence corresponds to a positive real value of a: and that each 
dependent quantity in (3 .4 )  is monotonically increasing up to this critical value. 
Stokes conjectured that this singularity would correspond to the highest possible 
wave, which has the 120" crest angle. 

In  order to determine the nature and location of this limiting singularity we 
employ a graphical procedure due to Domb & Sykes (1957) .  They note that if 

a + 0,  I ,  ..., 
K(€~+€)alog(€,*€),  a = 0,1, ... , 

m 

n= 0 
f(e) = C anen = 

then anla,-, = T eC1[1 - (1 + a)/nl, (3 .7b )  

which follows from the binomial expansion. Thus, for these special cases, if we 
plot the ratios a,/an-l versus I/%, the points will lie on a straight line. I n  general 
the unknown function f can be thought of as the sum of a number of singularities. 
If the one closest to the origin of e is of the above type, then the Domb-Sykes plot 
will ultimately tend towards a straight line as l / n  becomes small. The vertical 
intercept determines the reciprocal of the radius of convergence while the 
horizontal intercept l / n  = I/( 1 +a) yields the singularity exponent. 

I n  figure 2 we show Domb-Sykes plots for the semi-wave height series (3.3) 
for three depths. I n  each case the ratios of series coefficients asymptote to 
straight lines. All three asymptotes have the same horizontal intercept l / n  = g. 
Thus in each case the series convergence is limited by a square-root branch-point 
a t  a critical value aT(r,) .  Thus the form of h(al) in the vicinity of the branch- 
point is h(a,; Y,) N a,[aT2(r,) -a:]*. 

The same critical values aT(r,) are obtained for other dependent quantities. For 
the case of infinite depth, the plot gives the critical value a: = 0.2972. 

Several investigators have computed the highest-wave profile for the case of 
infinite depth. They exploit the fact that the 120" crest angle is known and build 
it into their solutions. In  the 5 plane the wave peak is found a t  the point 5 = 1. 
For the highest wave, from the surface condition and dimensional homogeneity, 
one can find the local solution 

(3 .9 )  q = dw/dz N ( I - c ) *  

near the wave crest. If the computation is restricted to the highest wave in deep 
water, the factor (1 - c)% may be inserted on the right side of (2 .5 ) ,  thereby 
ensuring that the wave profile has the proper crest. The methods of Michell 
(1893), later extended by Havelock (1919) ,  and Yamada (1957a)  proceed in this 
fashion. In  each case the Bernoulli condition is then manipulated to yield relations 
which may be used to determine the unknown series coefficients. The Michell- 
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FIGURE 2. Domb-Sykes plot for wave height h = rnaP--l. 

n= 1 

Havelock method uses the first coefficient PI = Q - a, as an expansion ‘ parameter ’ 
and expresses succeeding coefficients as power series in this quantity. At each 
stage of solution P, is re-evaluated. Havelock’s fourth-order computation gives 
a, = 0.2919 and a maximum wave height (A/L),,, = 0.1418. Havelock offers the 
first number as the critical value for the Stokes expansion. We have repeated his 
workup to fourth order and finda, = 0.2920 and (A/L)max = 0.1417 at that stage. 
The successive estimates for these numbers form a decreasing sequence, sug- 
gesting that the final values will be slightly below those given. Yamada’s approach 
is somewhat different. He truncates the unknown series, retaining only the first 
twelve elements. By an iterative computation he obtains optimum values 
satisfying the surface condition at  a number of points on the wave profile. His 
results give a, = 0.2921 and (A/L)m,x = 0.1412. 

The utility of our high-order series solution is greatly increased by recasting 
the polynomials as Pad6 approximants (rational fractions). From a typical series 
of the form f(e) = a,+a,E+ ... 
we can form the rational fraction 

+ Q,W+N €M+N + . . . , (3.10) 

b,+bl€+ ... +b;&@f 
“’ M l f ( e )  = 1 + CI€ + . . . + CiV € N  ’ (3.11) 

36 F L Y  62 
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a1 

FIGURE 3. Direct and reverted series for the wave height h and the first transformation 
coefficient a,; infinite depth. -, direct, h = [9,9] h(a1); ---, reverted, a, = [9, 9]a,(h); 
0 ,  highest wave of Havelock (1919). 

where the coefficients bj and ci are uniquely determined by the ui for given M 
and N .  The most important special case is when the orders of the numerator and 
denominator are equal. The series (3.10) will converge to a limit only if e lies within 
a circle whose radius is determined by the location of the nearest singularity in 
the complex-e plane. The sequence of Pad6 approximants [ N ,  N ] f ( s ) ,  N = 1 , 2,  . . . , 
will, in general, converge in a much larger domain, the shape of which is deter- 
mined by the branch-points off. The [ N ,  N ]  fractions provide rational approxi- 
mations to the analytic continuation of the power series. This is due primarily to 
their invariance under the Euler transformation 

E = €/(eo - €), (3.12) 

where eo is not zero but is otherwise arbitrary. Though the theory of Pad6 
fractions is not completely understood, their use is indicated when a significant 
number of series coefficients have been computed. Baker (1965) gives examples of 
their successful application in a variety of physical problems. 

Figure 3 is a plot of wave height versus u1 computed as a [9,9] approximant 
formed from the series solution. Havelock’s highest-wave result, where this curve 
had been assumed to terminate, is shown as a point in the figure. The curve misses 
Havelock’s point by a good deal. The square-root branch-point of (3.8) can be 
removed by reverting ]&(a,) to obtain a single-valued function a,@). The reverted 
series has also been recast as a [9,9] approximant. Its graph is seen to pass quite 
close to Havelock’s point. Thus while Havelock’s procedure in all probability 
finds the highest wave correctly, the value of a, he determined is not the critical 
one for the Stokes expansion. Analogous results have been found for the finite 
depth cases. 
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4. Perturbation series in the wave height 
This defect in the Stokes expansion can be removed by substituting the 

reverted series a,(h) into the other series in (3.4). However, because of the round- 
off error inherent in this process, it is preferable to reformulate the problem using 
the wave height itself as the independent parameter. Thus we take e = h and add 
(3.3) with rl = 1 and rk = 0, k = 2 , 3 , .  . . , to the system (2.9) to produce closure. 
Apart from this small modification the computation procedure previously out- 
lined still applies and the run time is identical. Solutions to O(h48) were computed 
for values of the depth parameter ro ranging from 0.1 to 0.9 by intervals of 0.1. 
For the special case of infinite depth the solution was found to O(h117). 

As before, for the deep-water wave, we can recognize the first few coefficients 
as rational numbers from their repeating decimals. To ninth order the results are 

a - h - ~ h 3 - - 1 5 _ ~ h 7 _ 1 6 1 _ 7 3 1 9 h 9  -..., 
1 -  2 4  1440 3 0 2'400- 

a - 2h2-55h4+yh6-283h8-1!35 617hlo -  ..., 
2 -  40  1ZXiiT 

a3 = ;h3_31h5 113h7-42521hS -..., 
a4 =Yh4-&f!h6 8 8 3 0 7 h 8  -..., a - 62&h5_Wh7+ELK6111h9 -..., 
a6=Z$h6 l Z O 4 8 7 h 8 +  ..., a - 117649h7-&0164s'I lh9+ ..., 
a - 1 3 1 0 7 2 h 8  -..., 
c2 = 1 + h2 + 4=h4 + lh6 - 22h8 - 1150esh10 - . . . , 

2 +T 1440 

1 8  1 0 8 0  5 - - 2 4  2 8 8  1 7  280 

3 0 0  7 - 7 2 0  4 3  2 0 0  

a - 1 4 3 4 8 9 0 7 h 9  -..., 
8 - 3 1 5  9 - 1 3  440  

4 4 5  2 5  2 0 0  

K = 1 + 27L2 - Lh4 -5h6 -301-ha - X 3 U h 1 0  - . . . , 
2 6  8 0  5 0  4 0 0  

S = 1 + h + 2h2 + 3h3 + y h 4  +25Lh5 +-96-1- h6 + 2549h7 + 8 4 2 6 4 X h S  + 12saalhg + . . . . 
4 5  6 0  9 4 5 0  7 0 0  

(4.1) 

Results up to order thirty for both the deep-water wave and the case ro = 0.5 
corresponding to the depthlwavelength ratio d / L  = 0.110 may be found in the 
author's Ph.D. dissertation (1972). 

The maximum wave height ratio can be obtained, for each depth, by 
exploiting the fact that the sharp crest of the highest wave is a stagnation point. 
The crest velocity is given by (2.5) with = 1. Thus 

qcrest = CIS, ( 4 4  

where 

and 

00 00 

S = 1+ ajcri = 2 sjhf 
j=1 i = O  

(4.3a) 

(4.3b) 

Here [A]  signifies the greatest integer not exceeding A .  Since qcrest is zero for the 
highest wave and cisknown to be bounded (Krasovskii 1960), the series expansion 
for S must become singular at  the critical value of h. 

Figure 4 shows Domb-Sykes plots of the ratios sj/sj-l for three depths. The 
vertical intercept of the extrapolated curve gives an estimate of hmax for each 
case. Notice that the curves for ro = 0 and 0.2 show damped oscillations of period 
two while for ro = 0.3 the period is four. For ro = 0 the intercept is about 2.25, 
corresponding to = 0.141. 

36-2 
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FIGURE 4. Domb-Sykes plot of the expansion for S = c/qo,,8t = I; 8 ,  hn 

for three depths. 
n=O 

The oscillations in these curves are caused by the presence of other singularities 
in the h plane. A singularity on the negative real axis somewhat further away from 
the origin than the one at  hmsx is responsible for the damped oscillation of period 
two in the curves for ro = 0 and 0.2. For r,, = 0.3, these two singularities are 
augmented by a conjugate pair on the imaginary axis. If we had plotted, instead, 
the ratios s2j/s2j-2 we should have obtained smooth curves for ro = 0 and 0.2 and 
a curve with period two for ro = 0-3. Each original series would become two 
series, one for the odd- and one for the even-order terms: 

m m 

X(hj = h S2j+lh2j  + Szjh2i.  (4.4) 
j = O  j = O  

By using the variable h2, rather than h, the singularities on the negative real axis 
are mapped onto the positive axis behind the leading one at  hence the 
period-two oscillation disappears. 

The maximum wave height for the deep-water wave may be estimated from 
the coefficients in either series on the right-hand side of (4.4). The sequences 
{Aj) = (s2j+l/s2i-l) and (BJ = {S~/S+~) ,  j = 1,2, . . . , each converge monotonically 
to the reciprocal of hkax. Their convergence may be accelerated by application 
of the nonlinear transformation of Shanks (1955). The coefficient ratios were 
computed for j < 35 and 36 for the odd- and even-order sequences respectively. 
From the last five elements in each sequence table 1 may be constructed; the 
operator e, is defined by 

(4.5) 



Stokes’ expansion for gravity waves 565 

4 e,(Aj) ef(Aj) B5 el(%) e:(B,) 
- - 5.0546 - - 5.0532 

5.0570 5.0817 - 5.0556 5.0819 - 
5.0591 5.0823 5.0822 5.0578 5.0817 5.0819 
5.0610 5.0821 - 5.0599 6.0824 - 
5.0628 - - 6.0617 - - 

TABLE 1 

The Shanks transformation is equivalent to the assumption that the members 
of each set of three consecutive elements in the sequences lie in a geometric 
progression. The entries in each half of the table converge to the number 5-082, 

(.4/L)max = 0.1412. corresponding to 

This last figure agrees to four decimal places with Yamada’s result. 
The same procedure can be used for the finite depth cases subject to certain 

qualifications. The conjugate pair of imaginary singularities in the h plane which 
is responsible for the additional oscillation in the curve for ro = 0.3 in figure 4 
moves ever closer to the origin as the depth is reduced. For r,, > 0.32 it is closer 
even than the highest-wave singularity and so it defines the radius of convergence 
of the expansion in h. It is spurious, however, and cannot be found in the extension 
of the Stokes solution, where a, rather than h is used as the independent para- 
meter. Thus for ro > 0.32 the sequences (s23+1/s2j-l) and {szi/s2j-2) would not con- 
verge to I/hLax but rather would indicate the spurious singularity corresponding 
to negative values of h2. This difficulty can be overcome by mapping away the 
offending point by means of an Euler transformation as in (3.12). The above 
procedure can then be applied to the transformed series. Another method, using 
[ N ,  N ]  Pad6 approximants, is both simpler and more accurate. It will be described 
below. 

We have not been able to specify the nature of the singularity at  h,,,. Hori- 
zontal asymptotes to the Domb-Sykes plots in figure 3 seem plausible, suggesting 
the existence of a simple pole at  the critical point. An isolated singular point must 
be rejected however. For if h,, were such a point it would then be possible to 
continue analytically the solution around it to obtain real, single-valued results 
for X and other physical quantities for real h > h,,,. We expect all physical 
quantities to have branch-points at  h,,,. The branch cuts emanating from h,,, 
could then shield the portion of the real axis h > h,, from an expansion about 
the origin. 

Shanks (1955) states that Pad6 approximantsplace a branch cut in the ‘shadow 
of a branch-point’. That is, the fractions model the branch cut by alternating 
poles and zeros along an outward ray emanating from the branch-point and 
collinear with the point of expansion. On the ‘cut’ the values of the fraction 
oscillate between zero and infinity as if to emphasize that the function being 
modelled is not single-valued there. Two sequences of [ N ,  N ]  approximants have 
been formed from the odd- and even-order series for X in (4.4). A polynomial 
factorization routine is then used to locate the poles and zeros of each 
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approximant. As expected a ‘cut’ forms on the positive real axis of h2. Since X 
becomes infinite a t  h,,, the first element in the cut is a pole. As N increases this 
leading pole moves monotonically inward, converging ultimately to hkaX. For the 
deep-water wave we get the following locations for the pole closest to the origin in 
the h2 plane. From the even-order series, as N increases from 2 to 11,  we obtain 
the sequence 

(0.23057, 0-20953, 0.20244, 0.19939, 0.19794, 0.19722, 0.19688, 

0.19674, 0.1967 I, 0.19671) 

and from the odd-order series, for the same values of N ,  

(0.22163, 0.20691, 0.20144, 0.19897, 0.19775, 0.19713, 0.19684, 

0.19673, 0.19671, 0.19671). 

Thus each sequence converges to the same value. From this number we obtain 

(A/L)max = 0.14118 for d / L  = co. (4.6) 

5. Finite depth results 
The same method has been applied to the finite depth cases to provide highest- 

wave estimates. For ro = 0.1, 0.2 and 0.3 the sequence of leading pole locations 
converges to four places for both odd and even orders. As the depth is decreased 
another branch cut appears on the negative real axis of the h2 plane. This cut 
corresponds to the spurious singularity which defines the radius of convergence 
of the h expansion for ro > 0.32. Since some of the poles of the [ N ,  N ]  approxi- 
mants are used for its description, fewer poles are left to simulate the singularities 
on the positive axis. The net effect is to slow down the rate at  which the leading 
positive pole converges to h,,,. Shanks’s iterated e,  transformations were used 
to accelerate convergence for ro 0.4. Internal consistency suggests three-place 
accuracy for ro = 0.4, 0.5 and 0-6, while only two good places could be obtained 
for ro  = 0.7. No highest-wave estimates were possible for ro = 0.8 or 0.9. 

Figure 5 compa,res results of the present work with those of the Michell- 
Havelock method, extended to finite depth by Chappelear (1959), and those of 
Yamada & Shiotani (1968), who used the method of Yamada’s earlier work. Our 
highest-wave estimates are indistinguishable from those of Yamada 8: Shiotani 
for ro < 0.6. For ro = 0-7 our results are about 2 yo higher. Chappelear’s results 
are consistantly higher owing perhaps to the fact that he carries the Michell- 
Havelock method to only the third approximation. The radius of convergence of 
the series expansion in h is also shown. Though spurious, this singularity domi- 
nates the series coefficients for shallow water depths. 

In  table 2 we present, for each value of ro, the radii of convergence a: and 
(AIL)“ of the series expansions in a, and h. When these values are less than 
(aJmax or (A/L)max, and these latter values are known, we show them in paren- 
theses immediately below the critical values. We also show the corresponding 
ratio Ald, the wave amplitude divided by the depth, for each point. Empty 
brackets in the table mean that the value is unknown. It is possible to extrapolate 
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FIGURE 5. Comparison of highest-wave estimates as a function of water depth. (A/L)max: 
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TO dlL a: A Id (A/L)* Ald 
0 CQ 0.2972 0 0-14118 0 
0.1 0.366 0.291 0.347 0-1380 0.377 
0.2 0.256 0.274 0462 0-1285 0.502 
0.3 0.191 0.246 0.540 0.1145 0.598 
0.4 0.146 0.211 0.595 0.0707 0.484 

(0.0975) (0.667) 
0.5 0.110 0.172 0.624 0.0381 0.345 

(0.0791) (0.717) 
0.6 0.08 15 0.131 0.639 0.01803 0.223 

(0.0614) (0.754) 
0.7 0.0570 0.092 0.657 0.00695 0.122 

(0.045) (0.79) 
0.8 0.0356 0.042 0.26 0.00185 0.0520 

(0.056) ( ) ( 1 0 
0.9 0.0168 0.011 0.08 0~00020 0.0119 

0 0 0  0 
TABLE 2. Radii of convergence of the series expansions 
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FIGURE 6. Wave velocity vs. amplitude and depth (including domains of convergence). 
0,  highest wave; , convergence boundaries; -- -, incomplete convergence. 

with reasonable accuracy, but we show only those numbers we have actually 
computed. All values are correct to the number of places shown. 

Notice that the expansions in a, do not converge through ( u , ) ~ ~ ~  for d/L < 0.05. 
For very shallow water, the radii of convergence of both expansions decrease with 
the depth, becoming identically zero for the solitary wave. Thisis not unexpected, 
and follows from choosing the wavelength as the reference dimension. 

A direct measure of the nonlinearity of the free-surface wave problem is given 
by the variation in wave speed with amplitude. Figure 6 shows the amplitude 
ratio A/d versus the square of the dimensionless wave speed, or Froude number 
referred to the depth c2/gd, for each value of d l L .  This type of plot, which is very 
efficient for the display of finite depth results, is adapted from Wehausen (1965). 

The values of the Froude number, for each yo, were computed as the Pad6 
fraction [12,12] c2(h).  I n  general [ N ,  N ]  c2(h) converged well up to amplitudes 
about 3 % short of the maximum. The speed at  (A/d)max was found, in each case, 
by extrapolating over this short distance. Thus there is some uncertainty as to 
the slope of the curves a t  these points. The highest-wave curve EGK is formed by 
connecting the limit points. On the dashed extensions of the curves for ro = 0.7, 
0.8 and 0.9 the sequences of approximants converged less well, but we feel that 
the Froude number is still accurate to 1 % there. 

Both the highest-wave curve EGK and F H J ,  the curve upon which a, assumes 
its maximum value, can be extrapolated to the origin. If we combine the ampli- 
tude and speed results for the highest wave in deep water, we obtain the value 

c2/gA = 1.348 for yo = 0, (AIL) = (A/L)max. (5.1) 
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This value should still be approximately correct when the depth is large but 
finite. From (5.1) we can obtain the linear relation 

Ala = o.742c21ga. (5.2) 

We show a segment of this line, labelled (ArnaJo, in figure 6. It is clearly the 
correct asymptote for EGK. 

Using the values of (AIL)* and a: from table 2, the domains of convergence of 
the two expansions have been delineated. The series expansion in h converges in 
the region OEGI. It includes the highest wave for ro < 0.32. Note that the right 
boundary GHI meets the pivotal point I with vertical slope. The entire domain 
lies within the sector c2/gd < 1. The original Stokes expansion in u, has been 
found to converge in the region OFHJI. This region extends well into the super- 
criticai velocity range c2/gd > 1. It never includes the highest wave. These 
domains of convergence are not significant from a computational point of view, 
and result, in large measure, from the inadequacies of the Taylor series expansion. 
We believe that the full family of free-surface waves of finite wavelength is 
included within the analytic continuation of the Stokes expansion. Our ability 
to compute high waves in shallow water is limited only by round-off error 
associated with finite computer word size. The round-off error is determined by 
the radii of convergence and hence by the non-physical singularities. 

When we are interested in the region somewhat below FHJ, the al rnax curve, 
either perturbation solution may be used. For yo = 0.8 and 0.9, we have drawn 
the curves using the expansion in a,. For these two cases the round-off error is 
less destructive for the a, expansion because its radius of convergence is larger. 

We cannot, of course, compute the solitary wave with a Stokes expansion, but 
we shall suggest a simple extrapolation, if only to show the approximate size of 
the unknown region in figure 6. On the free surface of a solitary wave, infinitely 
far from the crest, y is zero and the velocity is c. The Bernoulli condition applied 
to the highest solitary wave yields the relation 

(Afd),, = (&)c2/ga for yo = 1. (5.3) 

We show a segment of this straight line in the upper right corner of the figure. The 
speed and height of the highest solitary wave will be the co-ordinates of the 
intersection of (5.3) and curve EGK. The point denoted by the letter X is the 
highest solitary wave of Yamada (1957b). It is clear that an extrapolation of 
EGK will intersect (5.3) close to Yamada’s point. 

The complete flow field may be computed once the transformation coefficients 
ai in (2.3) are known to high order. Accurate values for the ai may be determined 
by summing the series Xaij hifa? with Pad6 fractions for a given value of h. Then 
the power series in 5 is itself recast as a Pad6 fraction. Streamlines in the 5 plane 
are the circles r = constant and the equipotentials are the rays x = constant. For 
fixed r ,  a streamline may be traced parametrically as x(x) and y(x), - 7~ < x < 7 ~ ,  

by separately equating real and imaginary parts of (2.3). 
Figure 7 shows the results of a sample calculation for AIL = 0-06478 and 

yo = 0.5, corresponding t o  d / L  = 0.110. The wave height chosen is 81 yo of the 
maximum for this depth. The first 18 coefficients ai were summed with [ 7 , 7 ]  
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FIGURE 7.  Sample flow field. d / L  = 0.110, AIL = 0.065. 

approximants. The power series in (2.3) was then recast as an [8, 81 approximant. 
By comparing the input wave height with the output result (i.e. examining 
y(O)-y(r)) an indication of the error could be obtained. The inconsistency 
between the two numbers was 0.06 yo. If the series in (2.3) is approximated by the 
18-term polynomial rather than the Pad6 fraction, this error is 1-3 yo. The region 
of greatest error for the truncated series is the vicinity of the wave crest. There 
the lack of higher-order harmonic content is felt most acutely. The streamlines 
are the solid curves and equipotentials the dashed curves in figure 7. Tables of 
results and details of the calculation may be found in the author’s Ph.D. 
dissertation. 

6. Extended results for the deep-water wave 
More detailed results have been obtained for the case of infinite depth. 

Qualitative aspects of these results may be expected to hold for other values of 
depth as well. 

Table 3 shows the square of the wave speed and Bernoulli constant for various 
wave heights. The higher-wave results are emphasized. These numbers were 
computed with well-converged Pad6 fractions and are accurate to the number of 
places shown. In the immediate vicinity of (A/L),,x = 0-1412 only three-figure 
convergence could be obtained. The result for c2 for AIL = 0.14 compares well 
with Yamada’s (1957a) highest-wave value 1.1931. 

For the deep-water wave, equation (3.6) for the displacement of the still-water 
level can be shown to  reduce to 

7 j  = D - d  == &(K-C2). (6.1) 
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AIL 
0 
0.04 
0.07 
0.10 
0.12 
0.13 
0.135 
0.14 

C2 

1 
1.01592 
1.04955 
1.10367 
1.15182 
1- 17820 
1.18996 
1.1930 

K 

1 
1.03145 
1.09533 
1.19111 
1.26790 
1.30548 
1.32017 
1.3207 

TABLE 3. c2 and K versus wave height; infinite depth 

Thus table 3 can be used to compute the mass transport per wave cycle for each 
value of the wave height. 

Figure 8 shows the variation of the first four transformation coefficients with 
wave height. Each ai reaches a maximum before the maximum wave height is 
achieved. The location of this maximum moves to the right with increasing j. 
In the case of a4, this maximum is very near AIL = 0.14, the value a t  which 
numerical convergence begins to fail. As the wave profile becomes increasingly 
steep, the radius of curvature of the crest decreases, becoming zero for the highest 
wave. The ai increase in general with wave height but, because no Fourier 
coe%cient can cancel the contribution of any other, the steeper waves must have 
proportionately greater high-order harmonic content. Thus each coefficient 
increases until the decreasing crest radius forces it, ultimately, to recede. 

Deep-water wave profiles for four values of the depth are shown in figure 9. 
The profiles for AIL = 0.030, 0.100 and 0.130 were computed in a manner 
analogous to that used for the flow field of figure 7 .  Here the coefficients ai were 
summed by [ 7 , 7 ]  approximants. Then the profiles were found by recasting the 
series in eix as a [ 14,141 approximant. The inconsistency between input and output 
values of the wave height is 0.02% for AIL = 0.130. The highest-wave profile 
required a method of 'series completion' which will be described below. The 
profiles shown in figure 9 were taken from a group of 20 computed for various wave 
heights in deep water. Each profile exhibited only one inflexion point, whose 
distance from the crest decreased with increasing wave height. The maximum 
profile inclination was a monotonically increasing function of wave height. While 
profiles with maximum inclinations greater than 28" could not be computed 
accurately with [ 14,141 approximants, an extrapolation to indicates 
a maximum inclination very close to 30". 

Havelock (1919) included a modification of Michell's method to treat waves 
short of the highest. He assumed that the limiting singularity, found a t  the crest 
for the highest wave, would change in location but not in type when lower waves 
were calculated. If a solution for a wave short of the highest were continued 
analytically above the free surface a kinked streamline with the same 120" crest 
angle would ultimately be found. He assumed, in effect, an expansion of the form 
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FIGURE 8. First four transformation coefficients a, w. wave height; infinite depth. 

0.10 

FIGURE 9. Wave profiles for the deep-water wave (oriented with respect to 
the still-water level). 
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00 

FIUURE 10. Domb-Sykes plots for the series c /q  = X anp; infinite depth. 
n=O 

for the deep-water case. The bi, as before, would be found by satisfying the 
Bernoulli condition to successively higher order on the free surface r = 1.  When 
co = 1, the highest wave would be found. As &, increased, lower waves would be 
calculated, culminating with the infinitesimal wave as go approached infinity. 
Havelock also showed that, for waves of vanishingly small height 6,  the cube-root 
singularity immediately satisfies the surface condition to order e2 when go is 
suitably chosen. 

By the use of our high-order solution and the Domb-Sykes plots, we can 
determine the singularity exponent and co directly and thus assess the validity of 
Havelock’s procedure. For the four waves whose profiles are shown in figure 9 we 
have drawn Domb-Sykes plots for a,/a,-, in the series 

clq = l + a , ~ + a 2 ~ 2 + . . .  . (6.3) 

They are shown in figure 10. For the highest-wave case, the calculation of the 
coefficients a, required the use of Pad6 fractions formed from a solution of order 
W 5 .  Moreover, the actual wave height used was AIL = 0.1410, slightly below the 
maximum. The sequence of Pad6 fractions gave the convergent estimates 
a, = 0.2917 and a2 = 0.194. Higher-order a, could be estimated less well and no 
estimates were possible for n > 12. 

The curves in figure 10 can be extrapolated to the vertical axis to yield values 
of c0 and the singularity exponent a. For AIL = 0.141, the values are c0 = 1.00 
and a = - 0.33 as expected. But for the other three cases, AIL = 0.130,O.lOO and 
0.030, we get 01 = - 0.42, - 0.489 and - 0.497 respectively. Thus it appears 
that as AIL is reduced the exponent a approaches - +. Similar plots have been 
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AIL 
FIGURE 11.  Nature and location of the limiting singularity in the 5 plane; c/q N (c0 - {)a; 

infinite depth. ( a )  Singularity exponent. ( b )  Singularity location. 

made for several other values of AIL. The results are shown in figure 11. In  
figure 11 (a )  we show the variation of a with wave height. It appears, from this 
figure, that, except for waves quite near the highest, the value a = - 4 is more 
nearly correct than - +. Figure 11 ( b )  shows the location co of this singular point. 
It moves from 1, for the highest wave, smoothly to infinity as the wave height 
decreases. 

We can show that the square-root singularity must be correct for waves of small 
height. For the deep-water wave the result of Wilton (1914) gives 

a, = (a"/?%!) h" + O(h,+Z). (6.4) 
Thus for h small and n large 

a,/a,-, z [n/(n - 1)In-l h 

~ 2 i  - eh[l-l/2n-1/24n2+ ...I, (6.5) 
where e is the base of natural logarithms. Comparing (6.5) with the equation of 
the straight-line asymptote on a Domb-Sykes plot 

~,/%-, = ( l i b )  [ I -  (1 +a)lnl, 

2 ,  50 = 

we find that, for h small and n large, 
a =  -1 
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The value a = --* corresponds to an included angle of go” ,  rather than 120”, 
on the broken ‘streamline’ in the analytic continuation of the flow, above the 
free surface, in the z plane. 

For the lowest wave in figure 10, AIL = 0.030, the coefficients a, will differ 
little from the values obtained from (6 .4 ) .  Notice that the slope of the straight 
line segment connecting the first two points, n = 1 and 2, yields the misleading 
result a = - 0.33, explaining why Havelock was able to get second-order accuracy 
from the cube-root assumption. The cube-root result for low waves is fortuitous 
and indeed would not have been obtained had any depth other than infinity been 
selected. 

The square-root character of the leading singularity has been found inde- 
pendently by Grant (1973),  who also states that only square-roots can be 
admitted by the surface condition. The apparent continuous transition to the 
cube-root as shown by the results of the Domb-Sykes plots in figure 11 (a) must 
then be caused by coalescense of several square-roots. 

The question is open as to whether Havelock’s expansion (6.2) can converge in 
spite of this defect. We feel that it does, if only because it has as many disposable 
constants as Stokes’ series. Thus it should be possible to satisfy the surface condi- 
tion to increasing order by their judicious selection. But, because it has the wrong 
singularity built in, it cannot be expected to converge much faster than Stokes’ 
series. Since it is a great deal more difficult to evaluate Havelock’s b, than 
Stokes’ a,, the method is, at best, of little use. 

While the method of Pad6 fractions yields accurate profiles for wave heights 
somewhat short of the maximum, it is insufficient for the description of very high 
waves. Pad6 fractions do not converge well in the immediate neighbourhood of 
branch-points; moreover, only the first few coefficients a, can be determined with 
acceptible accuracy. A method of series completion similar to the one used by 
Van Dyke (1970),  based on the results of Domb-Sykes plots, can be used instead. 
Unknown higher-order coefficients are replaced by their counterparts from the 
expansion of (co - &. For a given value of the wave height, a and co can be found 
from figure 1 1 .  If only the first N coefficients a, are known, the expansion for clq 
may be approximated as 

where (;) are binomial coefficients in the usual notation. Since c / q  = - it;dz/d<, 

equation (6.6) may be integrated to yield the wave profile and streamlines. The 
constant B is selected so that the peak-to-through wave height from (6.6) agrees 
with the input value. 

The highest-wave profile in deep water has been drawn using this series- 
completion method. Here AIL = 0.1412, <,, = 1 and a = - +. Figure 12 compares 
our results for N = 0 and 2 with Yamada’s (1957a) profile, For N = 2 we use the 
previously determined values a, = 0.2917 and a2 = 0-194. Our profile with N = 2 
is graphically indistinguishable from that of Yamada. 
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FIGURE 12. Highest-wave profile; infinite depth. -, series-completion method, 
N = 2; ---, series-completion method, N = 0; 0 ,  Yamada ( 1 9 5 7 ~ ) .  

7. Conclusions 
The major result of the present work is that virtually all progressive free- 

surface waves, that is almost the entire two-parameter family, may be computed 
to high accuracy using the infinitesimal-wave expansion. The only exception 
would be large amplitude waves in very shallow water. We have no reason to 
believe that any ‘natural barriers’ exist, however, and feel that the only limita- 
tion is a practical one, based on computer word size. Admittedly, the infinitesimal- 
wave expansion is best suited to deep water; yet our results for shallow water are 
so encouraging that we believe that greater accuracy can often be achieved with 
the present method than with the conceptually more difficult shallow-water 
theories. We have obtained highest-wave results for depthlwavelength as small 
as 0.057 and results for waves of moderate height for dlL = 0.017. All our results 
indicate, see figure 6 for example, an orderly two-parameter family where deep- 
and shallow-water waves differ mainly in scale rather than type. 

We have found the radii of convergence of the infinitesimal-wave expansion 
where either Stokes’s parameter a, or the wave height itself is used as the inde- 
pendent parameter. In  our view these domains are mainly a reflexion of the 
inadequacy of the power-series representation. The analytic continuation pro- 
vided by the use of Pad6 approximants renders either expansion useful over a 
much larger range of wave heights and water depths. The expansion in u1 is 
unable to compute very high waves because u1 is not a monotonically increasing 
function of wave height. By way of compensation the ul expansion is slightly 
preferable in very shallow water, where its coefficients suffer less from the effects 
of round-off error. 

Our computation of maximum wave height versus water depth agrees well 
with the results of the two highest-wave-only methods. We choose to locate these 
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maxima as those values of the height for which the reciprocal of the crest velocity 
becomes singular. The method works well even when this point lies far outside the 
circle of convergence of the power series. We have determined, by direct calcula- 
tion of the deep-water wave, that the maximum surface slope increases mono- 
tonically with the wave height. 

While computing waves in shallow water, we discovered other singularities in 
the series expansions. Since they did not correspond to flow-field singularities, 
i.e. positive real values of the wave height, we made no effort to identify and 
remove them, relying instead on the Pad6 approximants to provide the necessary 
analytic continuation. Yet it is their presence which causes the round-off error 
responsible for the ultimate failure of the method to produce accurate results for 
high waves in very shallow water. 

We have examined an alternative method proposed by Havelock for waves 
short of the highest. He inserts, in his expansion, the singularity corresponding to 
the 120' highest-wave crest angle. For waves of lesser amplitude, he places this 
same limiting singularity above the free surface, in the analytic continuation of 
the flow field. By the use of the Domb-Sykes plot and direct computation, we 
have shown that the 'singularity angle' decreases rapidly with wave height 
reaching a limiting value of 90" for the infinitesimal wave. 

The author is indebted to Professor M. D. Van Dyke for his encouragement and 
valuable advice during the course of this research. Support was provided by a 
N.A.S.A. Traineeship and by the Air Force Office of Scientific Research under 
Contract F 44620-69-C-0036. 
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